Components of some computers communicate with each other through optical fibers having an index of refraction n =1.55. What time in nanoseconds is required for a signal to travel 0.35 m through such a fiber? Your answer should be a number with two decimal places, do not include the unit.

Respuesta :

Answer: 1.00

Explanation:

The index of refraction [tex]n[/tex] is a number that describes how fast light propagates through a medium or material.

Being its equation as follows:

[tex]n=\frac{c}{v}[/tex]  (1)

Where [tex]c=3(10)^{8}m/s[/tex] is the speed of light in vacuum and [tex]v[/tex] its speed in the other medium and [tex]n=1.55[/tex].

So, from (1) we can find the velocity at which the signal travels and then the time it requires to travel:

[tex]v=\frac{c}{n}[/tex]  (2)

[tex]v=\frac{3(10)^{8}m/s}{1.55}[/tex]  (3)

[tex]v=193548387.1m/s[/tex]  (4)

Now, knowing the velocity [tex]v[/tex] is the distance [tex]d=0.35m[/tex] traveled in a time [tex]t[/tex]:

[tex]v=\frac{d}{t}[/tex]  (5)

We can isolate [tex]t[/tex] from (5) and find the value of the required time:

[tex]t=\frac{d}{v}[/tex]  (6)

[tex]t=\frac{0.35m}{193548387.1m/s}[/tex]  (7)

[tex]t=0.000000001s=1(10)^{-9}s=1ns[/tex]  (8) This is the time it takes the signal to travel through the optical fiber: 1 nanosecond.