Respuesta :
Answers:
a) How high does the rock get?=1.933m
b)How far downrange from the pedestal does the rock land?=21.25m
Explanation:
This situation is a good example of projectile motion or parabolic motion, in which the travel of the rock has two components: x-component and y-component. Being their main equations as follows:
x-component:
[tex]x=V_{o}cos\theta t[/tex] (1)
[tex]V_{x}=V_{o}cos\theta[/tex] (2)
Where:
[tex]V_{o}=18m/s[/tex] is the rock's initial speed
[tex]\theta=20\°[/tex] is the angle
[tex]t[/tex] is the time since the rock is propelled until it hits the ground
y-component:
[tex]y=y_{o}+V_{o}sin\theta t-\frac{gt^{2}}{2}[/tex] (3)
[tex]V_{y}=V_{o}sin\theta-gt[/tex] (4)
Where:
[tex]y_{o}=10m[/tex] is the initial height of the rock
[tex]y=0[/tex] is the final height of the rock (when it finally hits the ground)
[tex]g=9.8m/s^{2}[/tex] is the acceleration due gravity
Knowing this, let's begin with the anwers:
a) How high does the rock get?
Here we are talking about the maximun height [tex]y_{max}[/tex] the rock has in its parabolic motion. This is fulfilled when [tex]V_{y}=0[/tex].
Rewritting (4) with this condition:
[tex]0=V_{o}sin\theta-gt[/tex] (5)
Isolating [tex]t[/tex]:
[tex]t=\frac{V_{o}sin\theta}{g}[/tex] (6)
Substituting (6) in (3):
[tex]y_{max}=y_{o}+V_{o}sin\theta(\frac{V_{o}sin\theta}{g})-\frac{1}{2}g(\frac{V_{o}sin\theta}{g})^{2}[/tex] (7)
[tex]y_{max}=\frac{V_{o}^{2}sin^{2}\theta}{2g}[/tex] (8)
Solving:
[tex]y_{max}=\frac{(18m/s)^{2}sin^{2}(20\°)}{2(9.8m/s^{2})}[/tex] (9)
Then:
[tex]y_{max}=1.933m[/tex] (10) This is the maximum height the rock has.
b) How far downrange from the pedestal does the rock land?
Here we are talking about the maximun horizontal distance [tex]x_{max}[/tex] the rock has in its parabolic motion (this is fulfilled when [tex]y=0[/tex]):
[tex]0=y_{o}+V_{o}sin\theta t-\frac{gt^{2}}{2}[/tex] (11)
Isolating [tex]t[/tex] from (11):
[tex]t=\frac{2V_{o}sin\theta}{g}[/tex] (12)
Substituting (12) in (1):
[tex]x_{max}=V_{o}cos\theta (\frac{2V_{o}sin\theta}{g})[/tex] (13)
[tex]x_{max}=\frac{V_{o}^{2}(2cos\theta sin\theta)}{g}[/tex] (14)
Knowing [tex]sin(2\theta)=2cos\theta sin\theta[/tex]:
[tex]x_{max}=\frac{V_{o}^{2}sin2\theta}{g}[/tex] (15)
Solving:
[tex]x_{max}=\frac{(18m/s)^{2}sin2(20)}{9.8m/s^{2}}[/tex] (16)
Finally:
[tex]x_{max}=21.25m[/tex] (17)