Use Newton's method with the specified initial approximation x1 to find x3, the third approximation to the root of the given equation. (Round your answer to four decimal places.) 2 x − x2 + 1 = 0, x1 = 2

Respuesta :

Answer:

[tex]x_{3}=2.35[/tex]

Explanation:

Given [tex] x^2-2x-1=0,x_1=2[/tex]

From Newton's method

[tex]x_{n+1}=x_n-\dfrac{f(x_n)}{f'(x_n)}[/tex]

[tex]f(x)=x^2-2x-1[/tex]

[tex]f'(x)=2x-2[/tex]

Now

[tex]x_{2}=x_1-\dfrac{f(x_1)}{f'(x_1)}[/tex]

[tex]f(x)=x^2-2x-1[/tex]

[tex]f(2)=2^2-2\times 2-1[/tex]

f(x)=-1

[tex]f'(2)=2x-2[/tex]

[tex]f'(1)=2\times 2-2[/tex]

f'(1)=2

[tex]x_{2}=2+\dfrac{1}{2}[/tex]

[tex]x_{2}=2.5[/tex]

[tex]x_{3}=x_2-\dfrac{f(x_2)}{f'(x_2)}[/tex]

[tex]f(2.5)=2.5^2-2\times 2.5-1[/tex]

f(2.5)=0.45

[tex]f'(2.5)=2\times 2.5-2[/tex]

[tex]f'(2.5)=3[/tex]

[tex]x_{3}=2.5-\dfrac{0.45}{3}[/tex]

So

[tex]x_{3}=2.35[/tex]