Respuesta :

[tex]\bf (\stackrel{x_1}{4}~,~\stackrel{y_1}{-1})~\hspace{10em} slope = m\implies \cfrac{5}{2} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-(-1)=\cfrac{5}{2}(x-4)\implies y+1=\cfrac{5}{2}x-10[/tex]

[tex]\bf y=\cfrac{5}{2}x-11\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}[/tex]

Answer:

y = (5/4)*x -2

Step-by-step explanation: