Use Simpson's Rule with n = 10 to approximate the area of the surface obtained by rotating the curve about the x-axis. Compare your answer with the value of the integral produced by a calculator. (Round your answers to the nearest whole number.) y = 1 5 x5, 0 ≤ x ≤ 5

Respuesta :

The area of the surface is given exactly by the integral,

[tex]\displaystyle\pi\int_0^5\sqrt{1+(y'(x))^2}\,\mathrm dx[/tex]

We have

[tex]y(x)=\dfrac15x^5\implies y'(x)=x^4[/tex]

so the area is

[tex]\displaystyle\pi\int_0^5\sqrt{1+x^8}\,\mathrm dx[/tex]

We split up the domain of integration into 10 subintervals,

[0, 1/2], [1/2, 1], [1, 3/2], ..., [4, 9/2], [9/2, 5]

where the left and right endpoints for the [tex]i[/tex]-th subinterval are, respectively,

[tex]\ell_i=\dfrac{5-0}{10}(i-1)=\dfrac{i-1}2[/tex]

[tex]r_i=\dfrac{5-0}{10}i=\dfrac i2[/tex]

with midpoint

[tex]m_i=\dfrac{\ell_i+r_i}2=\dfrac{2i-1}4[/tex]

with [tex]1\le i\le10[/tex].

Over each subinterval, we interpolate [tex]f(x)=\sqrt{1+x^8}[/tex] with the quadratic polynomial,

[tex]p_i(x)=f(\ell_i)\dfrac{(x-m_i)(x-r_i)}{(\ell_i-m_i)(\ell_i-r_i)}+f(m_i)\dfrac{(x-\ell_i)(x-r_i)}{(m_i-\ell_i)(m_i-r_i)}+f(r_i)\dfrac{(x-\ell_i)(x-m_i)}{(r_i-\ell_i)(r_i-m_i)}[/tex]

Then

[tex]\displaystyle\int_0^5f(x)\,\mathrm dx\approx\sum_{i=1}^{10}\int_{\ell_i}^{r_i}p_i(x)\,\mathrm dx[/tex]

It turns out that the latter integral reduces significantly to

[tex]\displaystyle\int_0^5f(x)\,\mathrm dx\approx\frac56\left(f(0)+4f\left(\frac{0+5}2\right)+f(5)\right)=\frac56\left(1+\sqrt{390,626}+\dfrac{\sqrt{390,881}}4\right)[/tex]

which is about 651.918, so that the area is approximately [tex]651.918\pi\approx\boxed{2048}[/tex].

Compare this to actual value of the integral, which is closer to 1967.