Suppose a particle travels along a straight line with velocity v(t) = t 2 e −3t meters per second after t seconds. How far does the particle travel during the first 3 seconds? Round your answer to the nearest hundredth of a meter.

Respuesta :

Answer:

0.222 meters

Explanation:

Form the definition of instantly velocity:

[tex]v(t)=\frac{dx(t)}{dt}\\dx(t)=v(t)dt[/tex]

[tex]dx=(2te^{-3t})dt[/tex]

Integrating:

[tex]\int\limits^{x}_{0} {} \, dx=\int\limits^{t}_{0} {2te^{-3t}} \,dt[/tex]

Solve the integral by parts:

[tex]u=2t\\ du=2dt\\dv=e^{-3t}\\v=-\frac{1}{3}e^{-3t}\\[/tex]

[tex]x=-\frac{2}{3}te^{-3t}+\int\limits^{t}_{0} {\frac{2}{3} e^{-3t} } \, dt[/tex]

[tex]x=-\frac{2}{3}te^{-3t}-\frac{2}{9}e^{-3t}+\frac{2}{9}[/tex] (Remember to evaluate in t=0 and t=t)

Evaluating x(t) in t=3:

[tex]x(3)=-2e^{-9} -\frac{2}{9}e^{-9}+\frac{2}{9}\\x(3)=0.2219 [/tex] m; which rounded is 0.222 m.