Answer:
[tex]-\frac{3080}{81}[/tex]
Step-by-step explanation:
The given function is:
[tex]p(x)=3x^{5}+2x^{2}-5[/tex]
We have to find the value of the function at x = -5/3
In order to do this we need to replace every occurrence of x in the given function by -5/3. i.e.
[tex]p(-\frac{5}{3})=3(-\frac{5}{3})^{5}+2(-\frac{5}{3} )^{2}-5\\\\ p(-\frac{5}{3})=3(-\frac{3125}{243} )+2(\frac{25}{9} )-5\\\\p(-\frac{5}{3})=-\frac{3125}{81}+\frac{50}{9}-5\\\\ p(-\frac{5}{3})=-\frac{3080}{81}[/tex]
Thus, the value of the function at x =-5/3 is [tex]-\frac{3080}{81}[/tex]