Respuesta :

Answer:

[tex]x=\sqrt[3]{10}-2[/tex]

Step-by-step explanation:

The composite function (f(x+1)) is moved in the x-axis by -1, you know this by solving x+1=0.

The equivalent expresion for f(x+1) is

[tex]f(x+1)= (x-1+3)^{3}+4[/tex]

[tex]f(x+1)=(x+2)^{3}+ 4[/tex]

Eval the above expression in g(x)

[tex]g(x)=(x+2)^{3}+4-2[/tex]

We must find x that gives g(x)=12

The equation is the following

[tex]12=(x+2)^{3}+2[/tex]

Grouping terms>

[tex](x+2)^{3} =10[/tex]

To solve for x, must apply cubic root in both sides of equation:

[tex]\sqrt[3]{(x+2)^{3} } =\sqrt[3]{10}[/tex]

it then turns in the following>

[tex]x+2=\sqrt[3]{10}\\[/tex]

Giving the stated answer

Otras preguntas