PLEASE ANYONE I NEED YOUR HELP. For the points A(-2, 10) and B(-4,6). Find each of the following.
a. AB
b. The coordinates of the midpoint of AB
c. The slope of AB​

Respuesta :

Answer:

a. _ √20 , about 4.472136

b - (-3, 8)

c- Slope of 2

Step-by-step explanation:

Calculator

Answer:

a. [tex]AB=2\sqrt{5}[/tex]

b. [tex](-3,8)[/tex]

c. [tex]2[/tex]

Step-by-step explanation:

You have the points:

A(-2,10)

where i will call: [tex]x_{1}=-2[/tex] and [tex]y_{1}=10[/tex]

B(-4,6)

where i will call: [tex]x_{2}=-4[/tex] and [tex]y_{2}=6[/tex]

for our calculations we are going to need the distance in x between the points ([tex]\Delta x[/tex] )and the distance in y between the points ([tex]\Delta y[/tex]):

[tex]\Delta x =|x_{2}-x_{1}|=|-4-(-2)|=|-4+2|=|-2|=2\\\Delta y =|y_{2}-y_{1}|=|6-10|=|-4|=4[/tex]

a. To find AB (the distance between point A and point B) you need The Pythagorean Theorem:

[tex](AB)^2=(\Delta x)^2+(\Delta y)^2\\(AB)^2=(2)^2+(4)^2\\(AB)^2=4+16\\\\AB=\sqrt{20}\\ AB=2\sqrt{5}[/tex]

b. to find the coordinates of the midpoint we average the x-coordinates and the y coordinates

[tex]x_{mid}=\frac{x_{1}+x_{2}}{2} =\frac{-2-4}{2}=\frac{-6}{2} =-3\\y_{mid}=\frac{y_{1}+y_{2}}{2} =\frac{10+6}{2}=\frac{16}{2} =8\\[/tex]

so the midpoint [tex](x_{mid},y_{mid})[/tex] is at: [tex](-3,8)[/tex]

c. For the slope we use the slope formula:

[tex]slope=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-10}{-4-(-2)}=\frac{-4}{-2}=2[/tex]

The slope is equal to 2.