Respuesta :

Answer:

[tex]x=e^3+4[/tex] (exact)

x = 24.0855 (rounded)

Step-by-step explanation:

We need to remember 3 rules:

1. ln means log_e (ln is log base e)

2. [tex]a^b=x\\SameAS\\log_ax=b[/tex]

3. [tex]aLogx=Logx^a[/tex]

Now we can write the equation as:

[tex]3Ln(x-4)=9\\3Log_e(x-4)=9\\Log_e(x-4)^3=9[/tex]

Now, we can convert it to exponential and solve:

[tex]Log_e(x-4)^3=9\\(x-4)^3=e^9\\\sqrt[3]{(x-4)^3}=\sqrt[3]{e^9} \\ x-4=e^3\\x=e^3+4[/tex]

This is the exact value of x, in 4 decimal places (by using calculator), it would be

x = 24.0855