Respuesta :

Answer:

  1a. y = 5x +3

  1b. y = -1/7x + 2

  1c. y = 2x +3

  2a. y = -1/2x +3; slope = -1/2, y-intercept = +3

  2b. y = 3/2x +6; slope = 3/2, y-intercept = +6

Step-by-step explanation:

Apparently the "y-intercept form" referred to is the one more commonly called "slope-intercept form." That form is ...

  y = mx + b . . . . . . . . m is the slope; b is the y-intercept

You arrive at this form by solving each equation for y. You do that the same way you solve any equation for any variable: undo what is done to the variable of interest.

In these general form equations, the y-variable term has a value multiplying y and some other terms added to that. First of all, you subtract the added terms (from both sides of the equation). This transforms ...

  ax +by +c = 0

into

  by = -ax -c

Next, you divide by the constant that is multiplying y. Of course all terms on both sides of the equation are divided by that, so you now have ...

  y = (-a/b)x -c/b

The slope is -a/b, and the y-intercept is -c/b.

___

1a. 5x -y +3 = 0

  -y = -5x -3 . . . . . subtract non-y terms

  y = 5x +3 . . . . . . divide by -1

__

1b. x +7y -14 = 0

  7y = -x +14 . . . . . subtract non-y terms

  y = -1/7x +2 . . . . .divide by 2

__

1c. 6x -3y +9 = 0

  -3y = -6x -9 . . . . subtract terms not containing y

  y = 2x +3 . . . . . . divide by -3

__

2a. x +2y -6 = 0

  2y = -x +6 . . . . . subtract non-y terms

  y = -1/2x +3 . . . . divide by 2 -- this is graphed as the red line below

__

2b. 3x -2y +12 = 0

  -2y = -3x -12 . . . . subtract non-y terms

  y = 3/2x +6 . . . . . divide by -2 -- this is graphed as the blue line below

_____

Comment on the 2nd problem

Of course, the y-intercept (constant term in slope-intercept form) is the point on the y-axis where the line crosses. The slope tells you the ratio of "rise" to "run". That is, a slope of -1/2 means the line drops one unit for each 2 units it goes to the right. A slope of 3/2 means the line increases (rises) by 3 units for each 2 units it goes to the right.

Ver imagen sqdancefan