Answer:
The angular speed of the record is 3.36 rad/s.
Explanation:
Given that,
Mass of record= 0.10 kg
Radius = 0.10 m
Angular speed = 4.7 rad/s
Moment of inertia [tex]I=5.0\times10^{-4}\ kgm^2[/tex]
Mass of putty = 0.020 kg
We need to calculate the angular speed
Using law of conservation of momentum
[tex]L_{i}=L_{f}[/tex]
[tex]I\omega_{i}=(I+mr^2)\omega_{f}[/tex]
[tex]\omega_{f}=\dfrac{I\omega_{i}}{(I+mr^2)}[/tex]
Put the value into the formula
[tex]\omega_{f}=\dfrac{5.0\times10^{-4}\times4.7}{5.0\times10^{-4}+0.020\times(0.10)^2}[/tex]
[tex]\omega_{f}=3.36\ rad/s[/tex]
Hence, The angular speed of the record is 3.36 rad/s.