A projectile enters a resisting medium at x = 0 with an initial velocity v0 = 910 ft/s and travels 5 in. before coming to rest. Assume that the velocity of the projectile is defined by the relation v = v0 – kx, where v is expressed in ft/s and x is in feet. determine:
(A) the initial acceleration of the projectile
(B) the time required for the projectile to penetrate 3.9 in. into the resisting medium.

Respuesta :

Answer:

a = - 1.987 × 10⁶ ft/s²

t = 6.84 × 10⁻⁴ s

Explanation:

v₀ = 910 ft/s

x = 5 in.

relation v = v₀ - k x

v = 0 as body comes to rest

0 = 900 - 5k/12

k = 2184 s⁻¹

acceleration

[tex]\frac{\mathrm{d} v}{\mathrm{d} t} = -k\frac{\mathrm{d} x}{\mathrm{d} t}[/tex]

where

(A) a = -k × v

 at v= 910 ft/s

     a = - 1.987 × 10⁶ ft/s²

(B)  at x = 3.9 in.

v = 910 - 3.9(2184)/12

v = 200.2 m/s

[tex]\frac{\mathrm{d} v}{\mathrm{d} t} = -k\frac{\mathrm{d} x}{\mathrm{d} t}[/tex]

[tex]\frac{dv}{v} = -kdt[/tex]

[tex]\int\limits^{200.2}_{900} {\frac{1}{v} }dv = -k\int\limits^t_0 dt[/tex]

[tex]ln(200.2)-ln(900) = -kt[/tex]

t = 6.84 × 10⁻⁴ s