An airplane is flying at an elevation of 5150 ft, directly above a straight highway. Two motorists are driving cars on the highway, both on one side of the plane. If the angle of depression to one car is 37° and that to the other is 55°, how far apart are the cars? (Round your answer to the nearest foot.)

Respuesta :

Answer:

Distance between motorists equals 10440 feet

Explanation:

In the figure shown below we have

[tex]x=\frac{H}{tan(37)}\\\\Similarly\\\\y=\frac{H}{tan(55)}[/tex]

Thus the distance between the motorists is [tex]x+y[/tex]

Distance=[tex]\frac{5150}{tan(37)}+\frac{5150}{tan(55)}[/tex]

distance = 10440 feet

Ver imagen A1peakenbe