contestada

At the equivalence point of a KHP/NaOH titration, you have added enough OH- to react with all of the HP- such that the only species left in solution are P2- (the conjugate base of HP-) and the spectator ions Na+ and K+. If a titration of KHP with NaOH resulted in [P2-] = 0.042 M at the equivalence point, what is the pH of the solution? Ka for HP- = 3.9 x 10-6

Respuesta :

Explanation:

The given data is as follows.

  [tex][P^{2-}][/tex] = 0.042 M,      [tex]K_{a}[/tex] for [tex]HP^{-} = 3.9 \times 10^{-6}[/tex]

According to the given situation [tex]P^{2-}[/tex] acts as a base.The reaction equation will be as follows.

            [tex]P^{2-} + H_{2}O \rightleftharpoons HP^{-} + OH^{-}[/tex]

Relation between [tex]K_{b}[/tex] and [tex]K_{a}[/tex] are as follows.

                   [tex]K_{a} \times K_{b} = K_{w}[/tex]

                     [tex]K_{b} = \frac{1 \times 10^{-14}}{K_{a}}[/tex]

                                      =  [tex]\frac{1 \times 10^{-14}}{3.9 \times 10^{-6}}}[/tex]

                                      = [tex]2.6 \times 10^{-9}[/tex]

Also,      [tex]K_{b} = \frac{[HP^{-}][OH^{-}]}{P^{2-}}[/tex]

Let us take [tex][OH^{-}] = [HP^{-}][/tex] = x

So,                       [tex]K_{b} = \frac{[HP^{-}][OH^{-}]}{P^{2-}}[/tex]

                           [tex]2.6 \times 10^{-9} = \frac{x \times x}{0.042}[/tex]

                      x = [tex]1.04 \times 10^{-5}[/tex]

[tex][OH^{-}] = [HP^{-}][/tex] = [tex]1.04 \times 10^{-5}[/tex]

                          pOH = - log[tex][OH^{-}][/tex]

                                   = - log ([tex]1.04 \times 10^{-5}[/tex])

                                   = 4.99

As it is known that pH + pOH = 14

so,                  pH + 4.99 = 14

                         pH = 9.01

Thus, we can conclude that pH of the solution is 9.01.                  

The pH of the solution will equal 9.01, which is a basic pH.

  • We can arrive at this answer through the following calculation:

[tex]K_{a} +K_{b}= K_{c} \\K_{a} = 3.9*10^{-6}[/tex]

  • From this we can calculate the values of K:

[tex]K_{b}= \frac{1*10^-14}{K_a} \\K_b= \frac{1*10^-14}{3.9*10^-6} \\K_b= 2.6*10^-9[/tex]

  • We must also calculate the [tex]K_b[/tex] value related to [tex]HP^-[/tex] and [tex]OH^-[/tex]:

[tex]K_b=\frac{(HP^-)(OH^-)}{P^2-} \\2.6*10^-9=\frac{x*x}{0.042} \\(OH^-)=(HP^-)=1.04*10^-5\\[/tex]

  • Now we can calculate the pOH:

[tex]pOH=-log[OH^-]\\pOH=-log[1.04*10^-5]\\pOH=4.99[/tex]

  • Now we can calculate the pH:

[tex]pH+pOH=14\\pH+4.99=14\\pH=14-4.99\\pH= 9.1[/tex]

More information:

https://brainly.com/question/19840255?referrer=searchResults