Respuesta :
Answer:
Part a)
[tex]k = 1632 J[/tex]
Part b)
[tex]KE = 47 J[/tex]
Part c)
[tex]m = 7.9 kg[/tex]
Part d)
[tex]v = 2.57 m/s[/tex]
Part e)
[tex]KE = 26.1 J[/tex]
Part f)
[tex]PE = 20.9 J[/tex]
Explanation:
Total Mechanical energy is given as
[tex]E = 47.0 J[/tex]
Its maximum displacement from mean position is given as
[tex]A = 0.240 m[/tex]
Part a)
Now from the formula of energy we know that
[tex]E = \frac{1}{2}kA^2[/tex]
[tex]47 = \frac{1}{2}k(0.240)^2[/tex]
[tex]k = 1632 J[/tex]
Part b)
At the mean position of SHM whole mechanical energy will convert into kinetic energy
so it is given as
[tex]KE = 47 J[/tex]
Part c)
As per the formula of kinetic energy we know that
[tex]KE = \frac{1}{2}mv^2[/tex]
[tex]47 = \frac{1}{2}m(3.45^2)[/tex]
[tex]m = 7.9 kg[/tex]
Part d)
As we know by the equation of the speed of SHM is given as
[tex]v = \sqrt{\frac{k}{m}(A^2 - x^2)}[/tex]
[tex]v = \sqrt{\frac{1632}{7.9}(0.24^2 - 0.16^2)}[/tex]
[tex]v = 2.57 m/s[/tex]
Part e)
As we know by the formula of kinetic energy
[tex]KE = \frac{1}{2}mv^2[/tex]
[tex]KE = \frac{1}{2}(7.9)(2.57^2)[/tex]
[tex]KE = 26.1 J[/tex]
Part f)
As per energy conservation we know
KE + PE = Total energy
[tex]26.1 + PE = 47[/tex]
[tex]PE = 20.9 J[/tex]
(a) The spring constant will be k=1632 [tex]\frac{N}{m^2}[/tex]
(b) The KE at equilibrium point =47j
(c) The mass =7.9kg
(d) The velocity block [tex]2.57\frac{m}{sec}[/tex]
(e)The KE of block 0.160m will be 26.1
(f) The PE will be 20.9j
What will be the asked values of the spring-mass system in the question?
(a) for finding spring constant
KE=47 j
A=0.240m
By using the formula
[tex]E=\dfrac{1}{2} kx^2[/tex]
[tex]47=\dfrac{1}{2} k(0.240)^2[/tex]
[tex]k=1632\frac{N}{m^2}[/tex]
(b) At the mean position the whole mechanical energy will be equal to KE so
KE=47j
(c) The mass of the system
[tex]KE =\dfrac{1}{2} mv^2[/tex]
[tex]47=\dfrac{1}{2} m(3.45^2)[/tex]
[tex]m=7.9kg[/tex]
(d)Now the speed of the block
[tex]v=\sqrt{\dfrac{k}{m} (A^2-x^2)}[/tex]
[tex]v=\sqrt{\dfrac{1632}{7.9} (0.24^2-0.16^2)}[/tex]
[tex]v=2.57\frac{m}{s}[/tex]
(e) The KE of the block
[tex]KE=\dfrac{1}{2} mv^2=\dfrac{1}{2} 7.9(2.57)^2=26.1J[/tex]
(f) The PE of the system
[tex]Total Energy = KE+PE[/tex]
[tex]PE= 47-26.1 =20.9J[/tex]
Thus
(a) The spring constant will be k=1632 [tex]\frac{N}{m^2}[/tex]
(b) The KE at equilibrium point =47j
(c) The mass =7.9kg
(d) The velocity block [tex]2.57\frac{m}{sec}[/tex]
(e)The KE of block 0.160m will be 26.1
(f) The PE will be 20.9j
To know more about the spring-mass system follow
https://brainly.com/question/15540894