Respuesta :
Answer:
C. (9,1)
Step-by-step explanation:
Let the coordinated of Jaydas House be:
A(x_1, y_1) = (1,5)
The coordinates of Christian's House be:
B( x_2, y_2)
Let the restaurant be
M(x_M, y_M) = (7,2)
The ratio is 3:1
So
m=3 and n=1
So by the formula of finding the point that divides lines into given ratios
[tex]x_M = \frac{nx_1+mx_2}{m+n}\\7 = \frac{(1)(1)+(3)x_2}{3+1}\\7 = \frac{1+3x_2}{4}\\7*4 = 1 + 3x_2\\28-1=3x_2\\27=3x_2\\x_2 = \frac{27}{3}\\x_2 = 9\\y_M = \frac{ny_1+my_2}{m+n}\\2 = \frac{(1)(5)+(3)y_2}{3+1}\\2 = \frac{5+3y_2}{4}\\2*4 = 5 + 3y_2\\8=5+3y_2\\8-5=3y_2\\3=3y_2\\y_2 = \frac{3}{3}\\y_2 = 1[/tex]
Therefore the coordinates of Christian's house are (9,1)
Option C is correct ..