In the winter sport of curling, two teams alternate sliding 20 kg stones on an icy surface in an attempt to end up with the stone closest to the center of a target painted on the ice. During one turn, a player releases a stone that travels 27.9 m before coming to rest. The friction force acting on the stone is 2.0 N. What was the speed of the stone when the player released it?

Respuesta :

Explanation:

It is given that,

Mass of the stone, m = 20 kg

Frictional force, F = -2 N

A player releases a stone that travels 27.9 m before coming to rest, s = 27.9 m

We need to find the initial velocity of the stone. It can be calculated using third equation of motion as :

[tex]v^2-u^2=2as[/tex]

v = 0

And, [tex]a=\dfrac{F}{m}[/tex]

[tex]a=\dfrac{-2\ N}{20\ kg}=-0.1\ m/s^2[/tex]

[tex]0-u^2=2\times -0.1\ m/s^2\times 27.9\ m[/tex]

[tex]u=2.36\ m/s[/tex]

So, the speed of the stone when it was released is 2.36 m/s. Hence, this is the required solution.

The speed of the stone when the player released it was about 2.4 m/s

[tex]\texttt{ }[/tex]

Further explanation

Newton's second law of motion states that the resultant force applied to an object is directly proportional to the mass and acceleration of the object.

[tex]\large {\boxed {F = ma }[/tex]

F = Force ( Newton )

m = Object's Mass ( kg )

a = Acceleration ( m )

Let us now tackle the problem !

[tex]\texttt{ }[/tex]

Given:

mass of stone = m = 20 kg

distance traveled = d = 27.9 m

magnitude of friction force = f = 2.0 N

final speed of stone = v = 0 m/s

Asked:

initial speed of stone = u = ?

Solution:

Firstly, we will use Newton's Second Law of Motion to calculate the deceleration of the stone:

[tex]\Sigma F = ma[/tex]

[tex]-f = m a[/tex]

[tex]-2.0 = 20 a[/tex]

[tex]a = -2.0 \div 20[/tex]

[tex]\boxed{a = -0.1 \texttt{ m/s}^2}[/tex]

[tex]\texttt{ }[/tex]

Next, we could calculate the initial speed of stone as follows:

[tex]v^2 = u^2 + 2ad[/tex]

[tex]0^2 = u^2 + 2( -0.1) (27.9)[/tex]

[tex]u^2 = 5.58[/tex]

[tex]u = \sqrt{5.58}[/tex]

[tex]\boxed{u \approx 2.4 \texttt{ m/s}}[/tex]

[tex]\texttt{ }[/tex]

Learn more

  • Impacts of Gravity : https://brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454
  • The Acceleration Due To Gravity : https://brainly.com/question/4189441
  • Newton's Law of Motion: https://brainly.com/question/10431582
  • Example of Newton's Law: https://brainly.com/question/498822

[tex]\texttt{ }[/tex]

Answer details

Grade: High School

Subject: Physics

Chapter: Dynamics

Ver imagen johanrusli