Question Part Points Submissions Used If an object with mass m is dropped from rest, one model for its speed v after t seconds, taking air resistance into account, is v = mg c (1 − e−ct/m) where g is the acceleration due to gravity and c is a positive constant describing air resistance. (a) Calculate lim t→∞ v.

Respuesta :

Answer:

[tex]\lim_{t\rightarrow \mathbb{\infty }}v(t)=\frac{mg}{c}[/tex]

Explanation:

the velocity as a function of time is

[tex]v(t)=\frac{mg}{c}(1-e^{\frac{-ct}{m}})[/tex]

[tex]\therefore v(t)=\frac{mg}{c}(1-\frac{1}{e^{\frac{ct}{m}}})[/tex]

[tex]\therefore v(t)=\frac{mg}{c}(1-\frac{1}{e^{\frac{ct}{m}}})\\\\\therefore \lim_{t\rightarrow \mathbb{\infty }}v(t)=\frac{mg}{c}(1-\frac{1}{\infty })\\\\\therefore \lim_{t\rightarrow \mathbb{\infty }}v(t)=\frac{mg}{c}(1-0)\\\\\therefore \lim_{t\rightarrow \mathbb{\infty }}v(t)=\frac{mg}{c}[/tex]