Answer:
[tex]\lim_{t\rightarrow \mathbb{\infty }}v(t)=\frac{mg}{c}[/tex]
Explanation:
the velocity as a function of time is
[tex]v(t)=\frac{mg}{c}(1-e^{\frac{-ct}{m}})[/tex]
[tex]\therefore v(t)=\frac{mg}{c}(1-\frac{1}{e^{\frac{ct}{m}}})[/tex]
[tex]\therefore v(t)=\frac{mg}{c}(1-\frac{1}{e^{\frac{ct}{m}}})\\\\\therefore \lim_{t\rightarrow \mathbb{\infty }}v(t)=\frac{mg}{c}(1-\frac{1}{\infty })\\\\\therefore \lim_{t\rightarrow \mathbb{\infty }}v(t)=\frac{mg}{c}(1-0)\\\\\therefore \lim_{t\rightarrow \mathbb{\infty }}v(t)=\frac{mg}{c}[/tex]