A researcher wishes to estimate the proportion of adults who have​ high-speed Internet access. What size sample should be obtained if she wishes the estimate to be within 0.05 with 95​% confidence if ​(a) she uses a previous estimate of 0.32​? ​(b) she does not use any prior​ estimates?

Respuesta :

Answer: a) 8359  b) 384

Step-by-step explanation:

Given : Significance level : [tex]\alpha=1-0.95=0.05[/tex]

Critical value : [tex]z_{\alpha/2}}=\pm1.96[/tex]

Margin of error : [tex]E=0.01[/tex]

a) If previous estimate of proportion : [tex]p=0.32[/tex]

Formula to calculate the sample size needed for interval estimate of population proportion :-

[tex]n=p(1-p)(\frac{z_{\alpha/2}}{E})^2[/tex]

[tex]\Rightarrow\ n=0.32(1-0.32)(\frac{1.96}{0.01})^2=8359.3216\approx 8359[/tex]

Hence, the required sample size would be 8359 .

b) If she does not use any prior estimate , then the formula to calculate sample size will be :-

[tex]n=0.25\times(\frac{z_{\alpha/2}}{E})^2\\\\\Rightarrow\ n=0.25\times(\frac{1.96}{0.05})^2=384.16\approx384[/tex]

Hence, the required sample size would be 384 .