Respuesta :
Answer:
15x < 200; x < 13.33; the maximum price for a pair of shorts
Step-by-step explanation:
1. Set up the inequality
Let x = price of a pair of shorts. Then
15x = price of shorts for the team
You have one condition:
15x < 200
2. Solve the inequality
[tex]\begin{array}{rcl}15x & < & 200\\\\x & < & \dfrac{200}{15}\\\\x & < & \mathbf{13.333}\\\end{array}[/tex]
3. Meaning of solution
The solution represents the maximum price the coach can pay for a pair of shorts.
If the coach pays $13.33 per pair, the total cost for the team will be $199.95, and the condition is satisfied.
Answer: The coach may spend up to $13.33 per pair of shorts.
Step-by-step explanation:
Hi, to answer this question we have to write an inequality with the information given:
- Number of shorts: 15 (for 15 members)
- Budget: $200
So, we have to multiply the number of shorts by the price of each one, we will represent the price with the variable "x".(15x)
That cost must be equal or less to 200.
Mathematically speaking
15 x ≤ 200
Solving for x
x ≤200/15
x ≤ 13.33
This solution represents that the coach may spend up to $13.33 per pair of shorts.
Feel free to ask for more if needed or if you did not understand something.