Respuesta :
Answer :
(a) The value of [tex]K_p[/tex] is, [tex]5.0\times 10^{-4}[/tex]
(b) The value of [tex]K_c[/tex] is, [tex]3.83\times 10^{-2}[/tex]
Explanation:
(a) We have to determine the value of [tex]K_p[/tex].
The given balanced reaction is,
[tex]2A(g)+2B(g)\rightleftharpoons C(g)[/tex]
The relation between [tex]K_p[/tex] and [tex]K_c[/tex] are :
[tex]K_p=K_c\times (RT)^{\Delta n}[/tex]
where,
[tex]K_p[/tex] = equilibrium constant at constant pressure = ?
[tex]K_c[/tex] = equilibrium concentration constant = 55.6
R = gas constant = 0.08206 L⋅atm/(K⋅mol)
T = temperature = [tex]313^oC=273+313=586K[/tex]
[tex]\Delta n[/tex] = change in the number of moles of gas = [1 - (2 + 2)] = -3
Now put all the given values in the above relation, we get:
[tex]K_p=55.6\times (0.08206L.atm/K.mol\times 586K)^{-3}[/tex]
[tex]K_p=0.00050=5.0\times 10^{-4}[/tex]
The value of [tex]K_p[/tex] is, [tex]5.0\times 10^{-4}[/tex]
(b) We have to determine the value of [tex]K_c[/tex].
The given balanced reaction is,
[tex]X(g)+2Y(g)\rightleftharpoons 3Z(g)[/tex]
The relation between [tex]K_p[/tex] and [tex]K_c[/tex] are :
[tex]K_p=K_c\times (RT)^{\Delta n}[/tex]
where,
[tex]K_p[/tex] = equilibrium constant at constant pressure = [tex]3.83\times 10^{-2}[/tex]
[tex]K_c[/tex] = equilibrium concentration constant = ?
R = gas constant = 0.08206 L⋅atm/(K⋅mol)
T = temperature = [tex]119^oC=273+119=392K[/tex]
[tex]\Delta n[/tex] = change in the number of moles of gas = [3 - (2 + 1)] = 0
Now put all the given values in the above relation, we get:
[tex]3.83\times 10^{-2}=K_c\times (0.08206L.atm/K.mol\times 392K)^{0}[/tex]
[tex]K_c=3.83\times 10^{-2}[/tex]
The value of [tex]K_c[/tex] is, [tex]3.83\times 10^{-2}[/tex]