contestada

Sand is falling onto a cone-shaped pile at 10 cubic feet per minute. The diameter of the base of this cone is always 3 times the height of the cone. At what rate is the height of the sand pile increasing when the pile is 5 feet high?

Respuesta :

Answer:

[tex]\frac{dh}{dt} = 0.056 ft/min[/tex]

Explanation:

rate of falling of cone[tex] \frac {dv}{dt} = 10 ft^3/min[/tex]

height of pile is 5 feet

diameter is 3 times the height of cone

d = 3h

2r =3h

[tex]r \frac{3}{2} h[/tex]

volume of cone is given as

[tex]v = \frac{1}{3} \pi [\frac{2}{3} h]^{2} h[/tex]

[tex]v =\frac{3}{4} \pi* h^{3}[/tex]

[tex]\frac{dv}{dt} =\frac{3}{4}*\pi*3*h^{2}\frac{dh}{dt}[/tex]

[tex]\frac {dv}{dt} =\frac{9}{4}*\pi h^{2}}\frac{dh}{dt}[/tex]

[tex]\frac{dh}{dt} = \frac{4}{9} \pi*5^{2}*10}[/tex]

[tex]\frac{dh}{dt} = \frac{40}{706.5}[/tex]

[tex]\frac{dh}{dt} = 0.056 ft/min[/tex]