Respuesta :
I suppose
[tex]H=\mathrm{span}\{10x^2+4x-1,3x-4x^2+3,5x^2+x-1\}[/tex]
The vectors that span [tex]H[/tex] form a basis for [tex]P_2[/tex] if they are (1) linearly independent and (2) any vector in [tex]P_2[/tex] can be expressed as a linear combination of those vectors (i.e. they span [tex]P_2[/tex]).
- Independence:
Compute the Wronskian determinant:
[tex]\begin{vmatrix}10x^2+4x-1&3x-4x^2+3&5x^2+x-1\\20x+4&3-8x&10x+1\\20&-8&10\end{vmatrix}=-6\neq0[/tex]
The determinant is non-zero, so the vectors are linearly independent. For this reason, we also know the dimension of [tex]H[/tex] is 3.
- Span:
Write an arbitrary vector in [tex]P_2[/tex] as [tex]ax^2+bx+c[/tex]. Then the given vectors span [tex]P_2[/tex] if there is always a choice of scalars [tex]k_1,k_2,k_3[/tex] such that
[tex]k_1(10x^2+4x-1)+k_2(3x-4x^2+3)+k_3(5x^2+x-1)=ax^2+bx+c[/tex]
which is equivalent to the system
[tex]\begin{bmatrix}10&-4&5\\4&3&1\\-1&3&-1\end{bmatrix}\begin{bmatrix}k_1\\k_2\\k_3\end{bmatrix}=\begin{bmatrix}a\\b\\c\end{bmatrix}[/tex]
The coefficient matrix is non-singular, so it has an inverse. Multiplying both sides by that inverse gives
[tex]\begin{bmatrix}k_1\\k_2\\k_3\end{bmatrix}=\begin{bmatrix}-\dfrac{6a-11b+19c}3\\\dfrac{3a-5b+2c}3\\\dfrac{15a-26b+46c}3\end{bmatrix}[/tex]
so the vectors do span [tex]P_2[/tex].
The vectors comprising [tex]H[/tex] form a basis for it because they are linearly independent.