For the pair of triangles below, determine whether or not the triangles are similar. If they are similar, show your reasoning in a flowchart. If they are not similar, explain how you know.

For the pair of triangles below determine whether or not the triangles are similar If they are similar show your reasoning in a flowchart If they are not simila class=

Respuesta :

Answer:

The triangles are similar

Step-by-step explanation:

we know that

If two figures are similar, then the ratio of its corresponding sides is proportional

step 1

In the right triangle FED

Find the length of side FD

Applying the Pythagoras Theorem

[tex]FD^{2}=FE^{2}+DE^{2}[/tex]

substitute the given values

[tex]FD^{2}=3^{2}+4^{2}[/tex]

[tex]FD^{2}=25[/tex]

[tex]FD^{2}=5\ units[/tex]

step 2

In the right triangle BUG

Find the length of side GU

Applying the Pythagoras Theorem

[tex]BG^{2}=BU^{2}+GU^{2}[/tex]

substitute the given values

[tex]10^{2}=6^{2}+GU^{2}[/tex]

[tex]GU^{2}=100-36[/tex]

[tex]GU^{2}=8\ units[/tex]

step 3

Find the ratio of its corresponding sides

If the triangles are similar

[tex]\frac{FD}{BG}=\frac{FE}{BU}=\frac{DE}{GU}[/tex]

substitute the given values

[tex]\frac{5}{10}=\frac{3}{6}=\frac{4}{8}[/tex]

[tex0.5=0.5=0.5[/tex] -----> is true

therefore

The triangles are similar