Please help with #12

Answer:
a. 1 1/8 b. 8/9
Step-by-step explanation:
You can set this up as a proportion to solve. For part a. we know that 2/3 of the road is 3/4 mile long. 2/3 + 1/3 = the whole road, so we need how many miles of the road is 1/3 its length. Set up the proportion like this:
[tex]\frac{\frac{2}{3} }{\frac{3}{4} } =\frac{\frac{1}{3} }{x}[/tex]
Cross multiplying gives you:
[tex]\frac{2}{3}x=\frac{1}{3}*\frac{3}{4}[/tex]
The 3's on the right cancel out nicely, leaving you with
[tex]\frac{2}{3}x=\frac{1}{4}[/tex]
To solve for x, multiply both sides by 3/2:
[tex]\frac{3}{2}*\frac{2}{3}x=\frac{1}{4}*\frac{3}{2}[/tex] gives you
[tex]x=\frac{3}{8}[/tex]
That means that the road is still missing 3/8 of a mile til it's finished. The length of the road is found by adding the 3/4 to the 3/8:
[tex]\frac{3}{4}+\frac{3}{8}=\frac{6}{8}+\frac{3}{8}=\frac{9}{8}[/tex]
So the road is a total of 1 1/8 miles long.
For b. we need to find out how much of 1 1/8 is 1 mile:
1 mile = x * 9/8 and
x = 8/9. When 1 mile of the road is completed, that is 8/9 of the total length of the road completed.