Answer:
a) P = 44850 N
b) [tex]\delta l =0.254\ mm[/tex]
Explanation:
Given:
Cross-section area of the specimen, A = 130 mm² = 0.00013 m²
stress, σ = 345 MPa = 345 × 10⁶ Pa
Modulus of elasticity, E = 103 GPa = 103 × 10⁹ Pa
Initial length, L = 76 mm = 0.076 m
a) The stress is given as:
[tex]\sigma=\frac{\textup{Load}}{\textup{Area}}[/tex]
on substituting the values, we get
[tex]345\times10^6=\frac{\textup{Load}}{0.00013}[/tex]
or
Load, P = 44850 N
Hence the maximum load that can be applied is 44850 N = 44.85 KN
b)The deformation ([tex]\delta l[/tex]) due to an axial load is given as:
[tex]\delta l =\frac{PL}{AE}[/tex]
on substituting the values, we get
[tex]\delta l =\frac{44850\times0.076}{0.00013\times103\times 10^9}[/tex]
or
[tex]\delta l =0.254\ mm[/tex]