Respuesta :

Answer:

[tex]g(x)=x+6[/tex] is the answer

given

[tex]h(x)=4\sqrt{x+7}[/tex] and [tex]f(x)=4\sqrt{x+1}[/tex].

Step-by-step explanation:

[tex]h(x)=(f \circ g)(x)[/tex]

[tex]h(x)=f(g(x))[/tex]

Inputting the given function for h(x)  into the above:

[tex]4\sqrt{x+7}=f(g(x))[/tex]

Now we are plugging in g(x) for x in the expression for f which is [tex]4\sqrt{x+1}[/tex] which gives us [tex]4\sqrt{g(x)+1}[/tex]:

[tex]4\sqrt{x+7}=4\sqrt{g(x)+1}[/tex]

We want to solve this for g(x).

If you don't like the looks of g(x) (if you think it is too daunting to look at), replace it with u and solve for u.

[tex]4\sqrt{x+7}=4\sqrt{u+1}[/tex]

Divide both sides by 4:

[tex]\sqrt{x+7}=\sqrt{u+1}[/tex]

Square both sides:

[tex]x+7=u+1[/tex]

Subtract 1 on both sides:

[tex]x+7-1=u[/tex]

Simplify left hand side:

[tex]x+6=u[/tex]

[tex]u=x+6[/tex]

Remember u was g(x) so you just found g(x) so congratulations.

[tex]g(x)=x+6[/tex].

Let's check it:

[tex](f \circ g)(x)[/tex]

[tex]f(g(x))[/tex]

[tex]f(x+6)[/tex] I replace g(x) with x+6 since g(x)=x+6.

[tex]4\sqrt{(x+6)+1}[/tex] I replace x in f with (x+6).

[tex]4\sqrt{x+6+1}[/tex]

[tex]4\sqrt{x+7}[/tex]

[tex]h(x)[/tex]

The check is done. We have that [tex](f \circ g)(x)=h(x)[/tex].