Respuesta :

Answer:

C

Step-by-step explanation:

The absolute value function always returns a positive value

However, the expression inside the bars can be positive or negative

| 3 | = 3 and | - 3 | = 3, hence the solution of

| x | = 3 is x = ± 3

Extending this to

| x² - 4 | = 3, then

| x² - 4 | = 3 and | - (x² - 4) | = 3

x² - 4 = 3 ; - (x² - 4) = 3 → C

Answer:

C

Step-by-step explanation:

[tex]|x^2-4|=3[/tex]

Before we say what this implies, we need to know that |-1|=1 and |1|=1.

So what I'm saying is:

[tex]|-(x^2-4)|=|-1 \cdot (x^2-4)|=|-1| \cdot |x^2-4|[/tex]

[tex]=|x^2-4|[/tex].

So [tex]|x^2-4|=3[/tex] implies:

[tex](x^2-4)=3[/tex] or [tex]-(x^2-4)=3[/tex].