Respuesta :

Answer:

√3 - 2.

Step-by-step explanation:

Let A = 330 degrees so  A/2 = 165 degrees.

tan A/2 = (1 - cos A) /  sin A

tan 165 = (1 - cos 330) / sin 330

= (1 - √3/2) / (-1/2)

=  -2(1 - √3/2)

= -2 + 2 * √3/2

=  √3 - 2.

Answer:

[tex]\sqrt{3}[/tex] - 2

Step-by-step explanation:

Using the half- angle identity

tan( [tex]\frac{x}{2}[/tex] ) = [tex]\frac{sinx}{1+cosx}[/tex]

[tex]\frac{x}{2}[/tex] = 165° ⇒ x = 330°

sin330° = - sin30° = - [tex]\frac{1}{2}[/tex]

cos330° = cos30° = [tex]\frac{\sqrt{3} }{2}[/tex]

tan165° = [tex]\frac{sin330}{1+cos330}[/tex]

            = [tex]\frac{-\frac{1}{2} }{1+\frac{\sqrt{3} }{2} }[/tex]

            = - [tex]\frac{1}{2}[/tex] × [tex]\frac{2}{2+\sqrt{3} }[/tex]

            = - [tex]\frac{1}{2+\sqrt{3} }[/tex]

Rationalise by multiplying numerator/ denominator by the conjugate of the denominator

The conjugate of 2 + [tex]\sqrt{3}[/tex] is 2 - [tex]\sqrt{3}[/tex], hence

tan 165°

= - [tex]\frac{2-\sqrt{3} }{(2+\sqrt{3})(2-\sqrt{3})  }[/tex]

= - [tex]\frac{2-\sqrt{3} }{4-3}[/tex]

= - (2 - [tex]\sqrt{3}[/tex] )

= - 2 + [tex]\sqrt{3}[/tex] = [tex]\sqrt{3}[/tex] - 2