Consider a drug testing company that provides a test for marijuana usage. Among 300 tested​ subjects, results from 30 subjects were wrong​ (either a false positive or a false​ negative). Use a 0.01 significance level to test the claim that less than 10 percent of the test results are wrong.

Respuesta :

Answer:

static value come under the rejection value because it is less than critical value

Step-by-step explanation:

Given data

test = 300

wrong test = 30

significance level = 0.01

claim for wrong  = 10 %

to find out

test the claim that less than 10 percent of the test results are wrong

solution

we take test claim null hypo thesis  = 10 % = 0.10

and and alternate hypo thesis < 10% i.e. <0.10

and we know proportion of sample is = result/ test

sample proportion = 30/300 = 0.10

so the statistics of this test will  be = sample proportion - hypothesis / [tex]\sqrt{hyro(1-hypo)/test}[/tex]

so statistics of this test  = 0.10 - 0.10 / [tex]\sqrt{0.10(1-0.10)/300}[/tex]

so statistics of this test  =  0

and α = tail area critical value for  Z (0.01)  = 2.33

so here static value come under the rejection value because it is less than critical value