Answer:
The angular momentum and angular velocity are 1.134 kg.m²/s and 174.5 rad/s.
Explanation:
Given that,
Moment of inertia [tex]I= 6.5\times10^{-3}\ kg.m^2[/tex]
Torque = 21 N.m
Time dt = 54 ms
(a). We need to calculate the angular momentum
Using formula of torque
[tex]\tau=\dfrac{dL}{dt}[/tex]
[tex]dL =\tau\times t[/tex]
Where, dL = angular momentum
t = time
[tex]\tau[/tex] = torque
Put the value into the formula
[tex]dL=21\times0.054[/tex]
[tex]dL=1.134\ kg.m^2/s[/tex]
(b). We need to calculate the angular velocity of the disk
Using formula of angular velocity
[tex]dL=I\omega[/tex]
[tex]\omega=\dfrac{dL}{I}[/tex]
[tex]\omega=\dfrac{1.134}{6.5\times10^{-3}}[/tex]
[tex]\omega=174.5\ rad/s[/tex]
Hence, The angular momentum and angular velocity are 1.134 kg.m²/s and 174.5 rad/s.