Answer:
[tex]96[/tex]Pa
Explanation:
Let "n" represents the normal flow condition and "a" represents the abnormal flow condition.
As per continuity equation -
[tex]v_{n}*A_{n}= v_{a}*A_{a}[/tex]----------- Eq (1)
Where "v" represents the velocity and "a" represents the area of artery
Given-
[tex]A_a=\frac{A_n}{4}[/tex]
Substituting the above relation in equation (1), we get -
[tex]v_a = \frac{v_n*A_n}{A_a}\\ v_a= 4v_n\\[/tex]
As per Bernoulli's theorem, we know that -
[tex]P_a-P_n= \frac{1}{2}pv_a^2-\frac{1}{2}pv_n^2\\P_a-P_n=\frac{1}{2}p[\frac{v_a*A_a}{A_n} ]^2\\P_a-P_n=\frac{1}{2}pv_n^2[16-1]\\P_a-P_n=\frac{1}{2}*1060*(0.11)^2*15\\P_a-P_n=96[/tex]Pa