Chegg Given that the mean radius of the Moon’s orbit is 3.84 x 108 m and its period is 2.36 x 106 sec, at what altitude above the Earth’s surface does a geostationary satellite orbit?

Respuesta :

Answer:

The altitude of geostationary satellite is [tex]3.58\times10^{7}\ m[/tex]

Explanation:

Given that,

Radius of moon's orbit [tex]r=3.84\times10^{8}\ m[/tex]

Time period [tex]T=2.36\times10^{6}\ sec[/tex]

We need to calculate the orbital radius of geostationary satellite is

Using formula of time period

[tex]T=\sqrt{\dfrac{4\pi^2}{GM}a^3}[/tex]

[tex]a=((\dfrac{GM}{4\pi^2})T^2)^{\dfrac{1}{3}}[/tex]

Where, G = gravitational constant

M = Mass of earth

T = time period of geostationary satellite orbit

Put the value in to the formula

[tex]a=((\dfrac{6.67\times10^{-11}\times5.97\times10^{24}}{4\times\pi^2})\times(86160)^2)^{\dfrac{1}{3}}[/tex]

[tex]a=4.217\times10^{7}\ m[/tex]

We need to calculate the altitude of geostationary satellite

Using formula of altitude

[tex]h = a-R_{e}[/tex]

Where, R = radius of earth

a = radius of geostationary satellite

Put the value into the formula

[tex]h =4.217\times10^{7}-6.38\times10^{6}[/tex]

[tex]h =35790000\ m[/tex]

[tex]h=3.58\times10^{7}\ m[/tex]

Hence, The altitude of geostationary satellite is [tex]3.58\times10^{7}\ m[/tex]