Answer: Option C
[tex]-5+i[/tex]
Step-by-step explanation:
We have the following complex number
[tex]-3i^4+2i^3+2i^2+\sqrt{-9}[/tex]
Remember that by definition [tex]i=\sqrt{-1}[/tex] so [tex]i^2 = -1[/tex]
Then we simplify the expression:
[tex]-3(i^2)^2+2(i^2*i)+2i^2+\sqrt{9}*\sqrt{-1}[/tex]
[tex]-3(-1)^2+2((-1)*i)+2(-1)+\sqrt{9}*i[/tex]
[tex]-3-2i-2+3*i[/tex]
[tex]-5+i[/tex]
The answer is the option C