Answer : The mass of [tex]CS_2[/tex] is, 555.028 grams
Explanation :
First er have to calculate the concentration of [tex]S_2[/tex].
[tex]\text{Concentration of }S_2=\frac{\text{Moles of }S_2}{\text{Volume of solution}}=\frac{8.08mole}{5.35L}=1.51mole/L[/tex]
Now we have to calculate the concentration of [tex]CS_2[/tex].
The given balanced chemical reaction is,
[tex]S_2(g)+C(s)\rightleftharpoons CS_2(g)[/tex]
Initial conc. 1.51 0 0
At eqm. conc. (1.51-x) (x) (x)
The expression for equilibrium constant for this reaction will be,
[tex]K_c=\frac{[CS_2]}{[S_2]}[/tex]
Now put all the given values in this expression, we get :
[tex]9.40=\frac{x}{(1.51-x)}[/tex]
By solving the term 'x', we get :
x = 1.365 M
Concentration of [tex]CS_2[/tex] = x M = 1.365 M
Now we have to calculate the moles of [tex]CS_2[/tex].
[tex]\text{Moles of }CS_2=\text{Concentration of }CS_2}\times \text{Volume of solution}=1.365mole/L\times 5.35L=7.303mole[/tex]
Now we have to calculate the mass of [tex]CS_2[/tex].
Molar mass of [tex]CS_2[/tex] = 76 g/mole
[tex]\text{Mass of }CS_2=\text{Moles of }CS_2}\times \text{molar mass of }CS_2}=7.303mole\times 76g/mole=555.028g[/tex]
Therefore, the mass of [tex]CS_2[/tex] is, 555.028 grams