Answer:
The dissociation constant of phenol from given information is [tex]9.34\times 10^{-11}[/tex].
Explanation:
The measured pH of the solution = 5.153
[tex]C_6H_5OH\rightarrow C_6H_5O^-+H^+[/tex]
Initially c
At eq'm c-x x x
The expression of dissociation constant is given as:
[tex]K_a=\frac{[C_6H_5O^-][H^+]}{[C_6H_5OOH]}[/tex]
Concentration of phenoxide ions and hydrogen ions are equal to x.
[tex]pH=-\log[x][/tex]
[tex]5.153=-\log[x][/tex]
[tex]x=7.03\times 10^{-6} M[/tex]
[tex]K_a=\frac{x\times x}{(c-x)}=\frac{x^2}{(c-x)}=\frac{(7.03\times 10^{-6} M)^2}{ 0.529 M-7.03\times 10^{-6} M}[/tex]
[tex]K_a=9.34\times 10^{-11}[/tex]
The dissociation constant of phenol from given information is [tex]9.34\times 10^{-11}[/tex].