Respuesta :

Answer:

[tex]f^{-1}(x)=-2x+6[/tex].

Step-by-step explanation:

[tex]y=f(x)[/tex]

[tex]y=3-\frac{1}{2}x[/tex]

The biggest thing about finding the inverse is swapping x and y.  The inverse comes from switching all the points on the graph of the original.  So a point (x,y) on the original becomes (y,x) on the original's inverse.

Sway x and y in:

[tex]y=3-\frac{1}{2}x[/tex]

[tex]x=3-\frac{1}{2}y[/tex]

Now we want to remake y the subject (that is solve for y):

Subtract 3 on both sides:

[tex]x-3=-\frac{1}{2}y[/tex]

Multiply both sides by -2:

[tex]-2(x-3)=y[/tex]

We could leave as this or we could distribute:

[tex]-2x+6=y[/tex]

The inverse equations is [tex]y=-2x+6[/tex].

Now some people rename this [tex]f^{-1}[/tex] or just call it another name like [tex]g[/tex].

[tex]f^{-1}(x)=-2x+6[/tex].

Let's verify this is the inverse.

If they are inverses then you will have that:

[tex]f(f^{-1}(x))=x \text{ and } f^{-1}(f(x))=x[/tex]

Let's try the first:

[tex]f(f^{-1}(x))[/tex]

[tex]f(-2x+6)[/tex]  (Replace inverse f with -2x+6 since we had [tex]f^{-1})(x)=-2x+6[/tex]

[tex]3-\frac{1}{2}(-2x+6)[/tex]  (Replace old output, x, in f with new input, -2x+6)

[tex]3+x-3[/tex]  (I distributed)

[tex]x[/tex]

Bingo!

Let's try the other way.

[tex]f^{-1}(f(x))[/tex]

[tex]f^{-1}(3-\frac{1}{2}x)[/tex] (Replace f(x) with 3-(1/2)x since [tex]f(x)=3-\frac{1}{2}x[/tex])

[tex]-2(3-\frac{1}{2}x)+6[/tex] (Replace old input, x, in -2x+6 with 3-(1/2)x since [tex]f(x)=3-\frac{1}{2}x[/tex])

[tex]-6+x+6[/tex] (I distributed)

[tex]x[/tex]

So both ways we got x.

We have confirmed what we found is the inverse of the original function.

gmany

Answer:

[tex]\laege\boxed{f^{-1}(x)=-2x+6}[/tex]

Step-by-step explanation:

[tex]f(x)=3-\dfrac{1}{2}x\to y=3-\dfrac{1}{2}x\\\\\text{Exchange x to y and vice versa:}\\\\x=3-\dfrac{1}{2}y\\\\\text{Solve for}\ y:\\\\3-\dfrac{1}{2}y=x\qquad\text{subtract 3 from both sides}\\\\-\dfrac{1}{2}y=x-3\qquad\text{multiply both sides by (-2)}\\\\\left(-2\!\!\!\!\diagup^1\right)\cdot\left(-\dfrac{1}{2\!\!\!\!\diagup_1}y\right)=-2x-3(-2)\\\\y=-2x+6[/tex]