Atypicalaspirintabletcontains325mgofacetylsalicylic acid (HC9H7O4). Calculate the pH of a solution that is prepared by dissolving two aspirin tablets in one cup (237 mL) of solution. Assume the aspirin tablets are pure acetylsalicylic acid, Ka 5 3.3 3 1024.

Respuesta :

znk

Answer:

[tex]\boxed{2.65}[/tex]

Explanation:

1. Mass of acetylsalicylic acid (ASA)

[tex]m = \text{2 tablets} \times \dfrac{\text{325 mg}}{\text{1 tablet}} = \text{750 mg}[/tex]

2. Moles of ASA

HC₉H₇O₄ =180.16 g/mol

[tex]n = \text{750 mg} \times \dfrac{\text{1 mmol}}{\text{180.16 mg }} = \text{4.163 mmol}[/tex]

3. Concentration of ASA

[tex]c = \dfrac{\text{4.163 mmol}}{\text{237 mL}} = \text{0.01757 mol/L}[/tex]

4. Set up an ICE table

[tex]\begin{array}{ccccccc}\text{HA} & + & \text{H$_{2}$O}& \, \rightleftharpoons \, &\text{H$_{3}$O$^{+}$} & + &\text{A}^{-}\\0.01757 & & & &0 & & 0 \\-x & & & &+x & & +x \\0.01757-x & & & &x & & x \\\end{array}\\[/tex]

5. Solve for x

[tex]K_{\text{a}} = \dfrac{\text{[H}_{3}\text{O}^{+}]\text{A}^{-}]} {\text{[HA]}} = 3.33 \times 10^{-4}\\\\\dfrac{x^{2}}{0.01757 - x} = 3.33 \times 10^{-4}\\\\\textbf{Check that }\mathbf{x \ll 0.01757}\\\\\dfrac{ 0.01757 }{3.33 \times 10^{-4}} = 53 < 400\\\\\text{The ratio is less than 400. We must solve a quadratic equation.}\\\\x^{2} = 3.33 \times 10^{-4}(0.01757 - x) \\\\x^{2} = 5.851 \times 10^{-6} - 3.33 \times 10^{-4}x\\\\x^{2} + 3.33 \times 10^{-4}x - 5.851 \times 10^{-6} = 0[/tex]

6. Solve the quadratic equation.

[tex]a = 1; b = 3.33 \times 10^{-4}; c = -5.851 \times 10^{-6}[/tex]

[tex]x = \dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\\\\text{Substituting values into the formula, we get}\\x = 0.002258\qquad x = -0.002591\\\text{We reject the negative value, so}\\x = 0.002258[/tex]

7. Calculate the pH

[tex]\rm [H_{3}O^{+}]= x \, mol \cdot L^{-1} = 0.002258 \, mol \cdot L^{-1}\\\text{pH} = -\log{\rm[H_{3}O^{+}]} = -\log{0.002258} = \mathbf{2.65}\\\text{The pH of the solution is } \boxed{\textbf{2.65}}[/tex]