Answer:
61.85 ohm
Explanation:
L = 12 m H = 12 x 10^-3 H, C = 15 x 10^-6 F, Vrms = 110 V, R = 45 ohm
Let ω0 be the resonant frequency.
[tex]\omega _{0}=\frac{1}{\sqrt{LC}}[/tex]
[tex]\omega _{0}=\frac{1}{\sqrt{12\times 10^{-3}\times 15\times 10^{-6}}}[/tex]
ω0 = 2357 rad/s
ω = 2 x 2357 = 4714 rad/s
XL = ω L = 4714 x 12 x 10^-3 = 56.57 ohm
Xc = 1 / ω C = 1 / (4714 x 15 x 10^-6) = 14.14 ohm
Impedance, Z = [tex]\sqrt{R^{2}+\left ( XL - Xc \right )^{2}}[/tex]
Z = \sqrt{45^{2}+\left ( 56.57-14.14 )^{2}} = 61.85 ohm
Thus, the impedance at double the resonant frequency is 61.85 ohm.