Check the picture below.
now, we have a triangle with all three sides, thus we can use Heron's Area Formula on the triangle.
[tex]\bf \qquad \textit{Heron's area formula} \\\\ A=\sqrt{s(s-a)(s-b)(s-c)}\qquad \begin{cases} s=\frac{a+b+c}{2}\\[-0.5em] \hrulefill\\ a=10\\ b=26.695\\ c=22\\ s=29.3475 \end{cases} \\\\\\ A=\sqrt{29.3475(29.3475-10)(29.3475-26.695)(29.3475-22)} \\\\\\ A=\sqrt{29.3475(19.3475)(2.6525)(7.3475)}\implies A\approx \sqrt{11066.007} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill A\approx 105.195~\hfill[/tex]