contestada

A particle is moving with acceleration a ( t ) = 18 t + 4 . its position at time t = 0 is s ( 0 ) = 8 and its velocity at time t = 0 is v ( 0 ) = 7 . What is its position at time t = 5 ?

Respuesta :

Solution:

Given:

a(t) = 18t + 4

at t = 0 :

s(0) = 8

v(0) = 7

where,

s = position of particle

v = velocity of particle

Now, we know the following relations:

a = [tex]\frac{dv}{dt}[/tex]

v = ∫a dt = ∫(18t + 4)dt = 9[tex]t^{2}[/tex] + 4t + C

at t = 0 :

v(0) = 9(0) +4(0) + C

⇒ C = v(0) = 7

⇒ v (t) = 9[tex]t^{2}[/tex] + 4t +7

Now, using the relation:

v = [tex]\frac{ds}{dt}[/tex]

s =  ∫v dt = ∫(9[tex]t^{2}[/tex] + 4t +7)dt = 3[tex]t^{3} + 2t^{2}[/tex] + 7t + C

at t = 0 :

s(0) = 3(0) + 2(0) + 7(0) + C

⇒ C = s(0) = 8

s(t) =  3[tex]t^{3} + 2t^{2}[/tex] + 7t + 8

Now, position at t = 5 :

s(5) =  3[tex](5)^{3} + 2(5)^{2}[/tex] + 7(5) + 8

s = 468

Answer:

s = 468

Explanation: