Answer: [tex](f*g)(5)=-115[/tex]
Step-by-step explanation:
Given the function f(x):
[tex]f(x) = 4x + 3[/tex]
And the function g(x):
[tex]g(x) = -2x + 5[/tex]
We need to multiply them in order to find [tex](f*g)(x)[/tex]. Then:
[tex](f*g)(x) = (4x + 3)(-2x + 5)\\(f*g)(x)=-8x^2+20x-6x+15\\(f*g)(x)=-8x^2+14x+15[/tex]
Now we must substitute [tex]x=5[/tex] into [tex](f*g)(x)=-8x^2+14x+15[/tex]. Then, we get that [tex](f*g)(5)[/tex] is:
[tex](f*g)(5)=-8(5)^2+14(5)+15\\(f*g)(5)=-115[/tex]