Respuesta :
[tex]\bf \textit{Sum and Difference Identities} \\\\ sin(\alpha + \beta)=sin(\alpha)cos(\beta) + cos(\alpha)sin(\beta) \\\\ sin(\alpha - \beta)=sin(\alpha)cos(\beta)- cos(\alpha)sin(\beta) \\\\ cos(\alpha + \beta)= cos(\alpha)cos(\beta)- sin(\alpha)sin(\beta) \\\\ cos(\alpha - \beta)= cos(\alpha)cos(\beta) + sin(\alpha)sin(\beta) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ sin(52^o)cos(13^o)-cos(52^o)sin(13^o)\implies sin(52^o-13^o)\implies sin(39^o)[/tex]
Answer:[tex]sin\left ( 39\right )[/tex]
Step-by-step explanation:
[tex]sin\left ( a+b\right )=sinacosb+cosasinb [/tex]
[tex]sin\left ( a-b\right )=sinacosb-cosasinb [/tex]
Using above formula
[tex]sin\left ( 52-13\right )=sin52cos13-cos52sin13[/tex]
[tex]sin\left ( 39\right ) [/tex]