Respuesta :

Parameterize the surface (call it [tex]S[/tex]) by

[tex]\vec s(u,v)=u\,\vec\imath+v\,\vec\jmath+(1-u-v)\,\vec k[/tex]

with [tex]0\le u\le1[/tex] and [tex]0\le v\le1[/tex]. Take the normal vector to [tex]S[/tex] to be

[tex]\vec s_v\times\vec s_u=-\vec\imath-\vec\jmath-\vec k[/tex]

Then the integral of [tex]\vec F[/tex] over [tex]S[/tex] with the given orientation is

[tex]\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=\int_0^1\int_0^1(v^3\,\vec\imath+8\vec\jmath-u\,\vec k)\cdot(-\vec\imath-\vec\jmath-\vec k)\,\mathrm du\,\mathrm dv[/tex]

[tex]=\displaystyle\int_0^1\int_0^1(-v^3-8+u)\,\mathrm du\,\mathrm dv=\boxed{-\frac{31}4}[/tex]

We are to find the surface integral of [tex]\mathbf{\int \int _S \ F.ds}[/tex]

where;

  • the surface of the portion of the plane is [tex]x+y+z =1[/tex];
  • in the 1st octant,  [tex]x,y,z \geq 0[/tex]  , and:
  • the oriented surface [tex]\mathbf{F = y^3i+8j-xk}[/tex]

The plane x + y + z = 1

z = 1 - x - y

[tex]\dfrac{\partial z}{\partial x} = -1[/tex]

[tex]\dfrac{\partial z}{\partial y} = -1[/tex]

Since the surface is oriented downward

[tex]dS = \Big( \dfrac{\partial z}{\partial x}i + \dfrac{\partial z}{\partial y}j - k) dxdy[/tex]

[tex]dS = (-i-j-k) dxdy[/tex]

However,

Flux = [tex]\mathbf{\int \int _S \ F.ds}[/tex]

[tex]= \int \int_R F. \Big( \dfrac{\partial z}{\partial x}i + \dfrac{\partial z}{\partial y}j - k) dxdy \\ \\ \\ = \int^1_{ x=0} \int ^{1-x}_{y=0} ( y^3i + 8j -xk)*(-i-j-k) dx dy \\ \\ \\ =\int^1_{ x=0} \int ^{1-x}_{y=0} (-y^3 -8+x) dxdy \\ \\ \\ = \int^1_{ x=0} \Big( \int ^{1-x}_{y=0} \Big(x-y^3 -8\Big) dy \Big) dx \\ \\ \\ = \int^1_{ x=0} \Bigg [xy - \dfrac{y^4}{4}-8y \Bigg]^{1-x}_{y=0} \ dx \\ \\ \\[/tex]

[tex]= \int^1_{ x=0} \Bigg [x(1-x) - \dfrac{1}{4}(1-x)^{4} - 8(1-x) \Bigg ] dx \\ \\ \\ = \int^1_{ x=0} \Bigg [(x-x^2) - \dfrac{1}{4}(x-1)^4+8(x-1)\Bigg] dx[/tex]

[tex]= \Bigg [ \dfrac{x^2}{2}-\dfrac{x^3}{3} - \dfrac{1}{4} \dfrac{(x-1)^5}{5}+(x-1)^2\Bigg] ^1_0[/tex]

[tex]= \Bigg [ \dfrac{1}{2}-\dfrac{1}{3} -0+0-0+0+ \dfrac{1}{4}\times \dfrac{(-1)^5}{5}-(0-1)^2\Bigg][/tex]

[tex]= \Bigg [ \dfrac{1}{2}-\dfrac{1}{3} - \dfrac{1}{20}-1\Bigg][/tex]

[tex]= \Bigg [ \dfrac{30-20-3-60}{60}\Bigg][/tex]

[tex]= \Bigg [ \dfrac{-53}{60}\Bigg][/tex]

Therefore, we can conclude that the surface integral is [tex]\mathbf{-\dfrac{53}{60}}[/tex]

Learn more about surface integral here:

https://brainly.com/question/1423573?referrer=searchResults