Answer:
[tex]f=3\times 10^8\times 64.90=19.4\times 10^9 s^{-1}[/tex]
[tex]f=3\times 10^8\times39.9537=119.8613\times 10^8\ /sec[/tex]
Explanation:
for the transition from 148th orbit to 138th orbit
we know the formula
[tex]\frac{1}{\lambda }=R\times \left ( \frac{1}{n^2_{final}}-\frac{1}{n^2_{initial}} \right )[/tex]
where R is Rydberg constant whose value is [tex]1.0974\times 10^7 /m[/tex]
putting this value in equation
[tex]\frac{1}{\lambda }=1.0974\times 10^7 \left ( \frac{1}{139^2}-\frac{1}{148^2} \right )[/tex]
[tex]\frac{1}{\lambda }=64.9075[/tex]
[tex]f=c\lambda[/tex]
[tex]f=3\times 10^8\times 64.90=19.4\times 10^9 s^{-1}[/tex]
for the transition from 165th to 174th orbit
we know the formula
[tex]\frac{1}{\lambda }=R\times \left ( \frac{1}{n^2_{final}}-\frac{1}{n^2_{initial}} \right )[/tex]
where R is Rydberg constant whose value is [tex]1.0974\times 10^7 /m[/tex]
putting this value in equation
[tex]\frac{1}{\lambda }=1.0974\times 10^7 \left ( \frac{1}{165^2}-\frac{1}{174^2} \right )[/tex]
[tex]\frac{1}{\lambda }=39.95377[/tex]
[tex]f=c\lambda[/tex]
[tex]f=3\times 10^8\times39.9537=119.8613\times 10^8\ /sec[/tex]