Determine the molar solubility ( ???? ) of Zn(CN)2 in a solution with a pH=1.33 . Ignore activities. The ????sp for Zn(CN)2 is 3.0×10−16 . The ????a for HCN is 6.2×10−10 .

Respuesta :

Explanation:

We have to determine the molar solubility of [tex]Zn(CN)_{2}[/tex] in the given solution.

So, let molar solubility is x.

             [tex]Zn(CN)_{2} \rightleftharpoons Zn^{2+} + 2CN^{-}[/tex]

                       0           x        2x

Also, HCN upon dissociation gives [tex]HCN \rightleftharpoons H^{+} + CN^{-}[/tex]

So, concentration of hydrogen ion equals the concentration of cynaide ion. Therefore, calculate the concentration of hydrogen ion using the pH value as follows.

                           pH = -log[tex][H^{+}][/tex]

                          1.33 = -log[tex][H^{+}][/tex]

                     antilog (-1.33) = [tex][H^{+}][/tex]

                          [tex][H^{+}][/tex] = [tex]4.68 \times 10^{-2}[/tex]

Let molar solubility of hydrogen and cyanide ions is "a".

                    [tex]HCN \rightleftharpoons H^{+} + CN^{-}[/tex]

                          0        a        a

Also,      [tex]K_{sp}[/tex] = [tex][Zn^{2+}][CN^{-}]^{2}[/tex]

                           = x [tex](x + a)^{2}[/tex]            

                           = [tex]x \times a^{2}[/tex]       ( x + a = a because a >> x)          

                                 x = [tex]\frac{K_{sp}}{a^{2}}[/tex]

                             = [tex]\frac{3.0 \times 10^{-16}}{(4.68 \times 10^{-2})^{2}}[/tex]

                             = [tex]1.369 \times 10^{-13} M[/tex]

Thus, we can conclude that molar solubility of [tex]Zn(CN)_{2}[/tex] in the given solution is [tex]1.369 \times 10^{-13} M[/tex].