Respuesta :

Answer:

[tex]\frac{7\sqrt{5} }{8}[/tex]

Step-by-step explanation:

Using the rules of radicals

[tex]\sqrt{\frac{a}{b} }[/tex] = [tex]\frac{\sqrt{a} }{\sqrt{b} }[/tex]

[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]

Given

[tex]\sqrt{\frac{245}{64} }[/tex] = [tex]\frac{\sqrt{245} }{\sqrt{64} }[/tex]

Simplifying the radicals

[tex]\sqrt{245}[/tex]

= [tex]\sqrt{5(7)(7)}[/tex]

= [tex]\sqrt{49(5)}[/tex]

= [tex]\sqrt{49}[/tex] × [tex]\sqrt{5}[/tex] = 7[tex]\sqrt{5}[/tex]

and

[tex]\sqrt{64}[/tex] = 8

The simplified radical is

[tex]\frac{7\sqrt{5} }{8}[/tex]