The number of wild flowers growing each year in a meadow is modeled by the function f(x)

f(x)=1000/1+9e^-0.4x

Which statements are true about the population of wild flowers?

Select each correct answer.


A: 42 more wildflowers will grow in the 11th year than in the 10th year.

B: After approximately 9 years, the rate for the number of wild flowers decreases.

C: Initially there were 100 wild flowers growing in the meadow.

D: In the 15th year, there will be 1050 wild flowers in the meadow.

Please no guessing, and remember to provide reasoning for your answer

Respuesta :

Answer: A and C

Step-by-step explanation: Took the test |

                                                                    \/

Ver imagen Itsyaboi2024

The true statement is (c) Initially there were 100 wild flowers growing in the meadow.

The function for the number of wild flowers is given as:

[tex]f(x)=\frac{1000}{1+9e^{-0.4x}}[/tex]

Set x to 0

[tex]f(0)=\frac{1000}{1+9e^{-0.4 * 0}}[/tex]

Evaluate the product

[tex]f(0)=\frac{1000}{1+9e^{0}}[/tex]

Evaluate the exponent

[tex]f(0)=\frac{1000}{1+9}[/tex]

Evaluate the sum

[tex]f(0)=\frac{1000}{10}[/tex]

Evaluate the quotient

[tex]f(0)=100[/tex]

The above represents the initial number of wild flowers

Hence, the true statement is (c) Initially there were 100 wild flowers growing in the meadow.

Read more about functions and equations at:

https://brainly.com/question/15602982