if you apply the changes below to the quadratic parent function, f(x)=x^2, what is the equation of the new function? shifted 1 unit right. vertically streched by a factor of 5. reflected over the x-axis.

Respuesta :

Answer:

[tex]f(x) = - 5 {(x - 1)}^{2} [/tex]

Step-by-step explanation:

The given parent function is:

[tex]f(x) = {x}^{2} [/tex]

If we shift to the right by 1 unit, the function becomes:

[tex]f(x) = {(x - 1)}^{2} [/tex]

If we stretch by a factor of 5, the function becomes,

[tex]f(x) =5 {(x - 1)}^{2} [/tex]

Finally reflecting over the x-axis gives:

[tex]f(x) = - 5 {(x - 1)}^{2} [/tex]

Answer:

f'''(x)=-5(x-1)^2

Step-by-step explanation:

Given:

f(x)= x^2

Shifting 1 unit to right means subtracting 1 from the function i.e

f(x-1)=(x-1)^2

f'(x)=(x-1)^2

now vertically stretching above f'(x)  by a factor of 5:

5f'(x)=5(x-1)^2

f''(x)=5(x-1)^2

finally reflecting above f'''(x) over the x-axis:

-f''(x)=-5(x-1)^2

f'''(x)=-5(x-1)^2 !